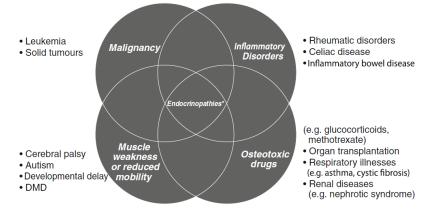
# Bone Health in Children with Medical Complexity


### **DEFINITION:**

|   | Clinically Significant Fractures                        | Osteoporosis                                           |
|---|---------------------------------------------------------|--------------------------------------------------------|
| 0 | 2 or more long bone fractures by 10 years               | Clinically Significant Fracture Hx AND a DXA Z-score ≤ |
| 0 | <b>3</b> or more long bone fractures by <b>19</b> years | -2.0 SD adjusted for age, sex & height as appropriate  |
| 0 | 1 or more vertebral compression fractures (loss of      |                                                        |
|   | >20% of vertebral body height) at any age               |                                                        |

## **ETIOLOGY:**

| Primary      | Connective tissue disorders                                                                      |
|--------------|--------------------------------------------------------------------------------------------------|
| osteoprosis  |                                                                                                  |
| Secondary    | Reduced weight-bearing (e.g., CP, DMD), endocrine conditions (e.g., delayed puberty, GH          |
| osteopososis | deficiency), renal disease, malnutrition, inflammatory/infiltrative conditions, osteotoxic drugs |
|              | (e.g., glucocorticoid, methotrexate)                                                             |

#### Main Causes of Secondary Osteoporosis Associated with Fragility Fractures in Childhood



\*The endocrinopathies with potential to impact bone strength that are most frequently encountered in the chronic illness setting include delayed puberty, and growth hormone deficiency

## **EPIDEMIOLOGY:**

- Children with CP are at risk for osteoporosis and fragility fractures
- 70-80% of fractures occur in the distal femur or proximal tibia following minimal trauma
- Children with CP are more likely to develop complications after a fracture, such as:
   o Further fractures, malunion, nonunion, and infections including pneumonia

#### Risk factors:

| 1. | Decreased weight bearing                              | 5. Delayed puberty             |
|----|-------------------------------------------------------|--------------------------------|
| 2. | Inadequate calcium and vitamin D intake               | 6. Menstrual irregularity      |
| 3. | Exposure to medications (e.g., anticonvulsants, PPIs) | 7. Decreased sunlight exposure |
| 4. | Lean mass deficit                                     |                                |

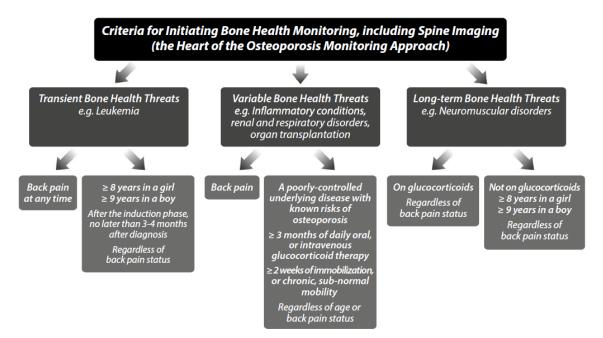
 Long-term enteral feeding + long-term PPI use → hypophosphatemia & negative bone health outcomes

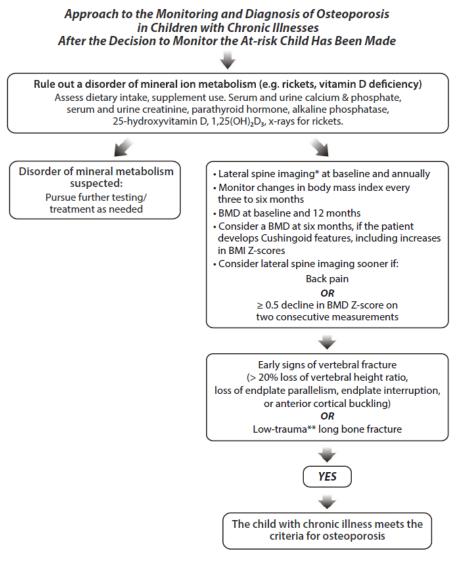
## **CLINICAL FEATURES:**

- Asymptomatic unless fractures occur, which then often cause pain/irritability and localized tenderness
  - $_{\odot}$   $\,$  Should be considered in the non-verbal child with irritability NYD  $\,$

## **COMPLICATIONS:**

- Painful fractures
- Permanent deformity
- Premature loss of ambulation


## **DXA SCAN:**


- Preferred sites: Lumbar spine or whole body minus cranium (lateral distal femur if reference date available; correlate well with increased lower extremity fragility fracture risk in non-ambulatory children)
   Results to be adjusted for age, sex and height or bone age
  - **Z-score**  $\ge$  **-1**  $\rightarrow$  normal
  - Z-score  $< -1 > -2 \rightarrow$  osteopenia
  - $\circ$  Z-score ≤ -2  $\rightarrow$  osteoporosis

In patients at risk for secondary bone disease, DXA should be performed when the patient may benefit from interventions to decrease their elevated risk of clinically significant fractures.

## **BONE HEALTH MONITORING & DIAGNOSIS OF OSTEOPOROSIS:**

## Criteria to initiate bone health monitoring, including spinal X-ray





\* Spine imaging by lateral spine radiograph or "vertebral fracture assessment" (VFA) by DXA

\*\* Low trauma is defined as falling from a standing height or less, at no more than walking speed

## **PREVENTATIVE MEASURES:**

- 1. Monitoring growth, puberty, and menstrual irregularities
- 2. Adequate calcium and vitamin D intake (via nutrition and/or supplementation)
- 3. Nutritional support
- 4. Promoting weight bearing activities

## **PREVENTATIVE/TREATMENT SUPPLEMENTS AND MEDS:**

#### VITAMIN D:

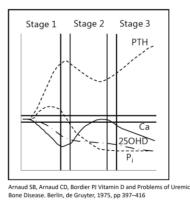
#### Vitamin D intake:

Consider supplementing children with CP with vitamin D2/D3 (starting dose of 800-1000 IU/day).

| Age         | RDA vitamin D (IU/day) | UL vitamin D (IU/day) |
|-------------|------------------------|-----------------------|
| 0-12 months | 400                    | 1500                  |
| 1-3 years   | 600                    | 2500                  |
| 4-8 years   | 600                    | 3000                  |
| 9-18 years  | 6000                   | 4000                  |

| Food                                      | Vitamin D Content, IU      |
|-------------------------------------------|----------------------------|
| Fortified milk/infant formulas            | 400/ L                     |
| Fortified orange juice/soy milk/rice milk | 400/ L                     |
| Yogurt (normal, low fat, or nonfat)       | 89/ 100 g                  |
| Cheddar cheese                            | 12/100 g                   |
| Cereal fortified                          | 40/ serving                |
| Egg yolk                                  | 20-25 per yolk             |
| Shrimp                                    | 152/100 g                  |
| Canned pink salmon with bones in oil      | 624/100 g                  |
| Cooked salmon/mackerel                    | 345-360/100 g              |
| Cod liver oil                             | 175/g; 1360/<br>tablespoon |

25-OH-vitamin D level:


- Best available indicator of total body vitamin D status .
- Half-life of 25-OH-vitamin D: 2-3 weeks .
- Goal: 70-100 nmol/L .

Vitamin D deficiency/insufficiency definitions:

| Canadian Pediatric<br>Society<br>(2007) | Pediatric Endocrine<br>Society of North America<br>(2008) | The Institute of Medicine<br>(Health and Medicine<br>Division of the National<br>Academies, 2010) | The Endocrine Society<br>(2011) |
|-----------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------|
| Deficiency: < 25 nmol/l                 | Deficiency: < 37.5 nmol/l                                 | Deficiency: < 30 nmol/l                                                                           | Deficiency: ≤ 50 nmol/l         |
| Insufficiency: 25-75<br>nmol/l          | Insufficiency: 37.5 - 50<br>nmol/l                        | Insufficiency: 30-50<br>nmol/l                                                                    | Insufficiency: 52-72<br>nmol/l  |
| Optimal: ≥ 75 nmol/l                    | Optimal: ≥ 50 nmol/l                                      | Optimal: ≥ 50 nmol/l                                                                              | Optimal: ≥ 72 nmol/l            |

IOM (Institute of Medicine). 2011 Dietary Reference Intakes for Calcium and Vitamin D. Washington DC: The National Academies Press Holick MF et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96:1911-30 Canadian Pediatric Society Paediatr Child Health 2007;12:583-9

## Stages of vitamin D deficiency:



Treatment of vitamin D deficiency:

- **0-1 Y/O:** 2,000 IU per day for 6-12 weeks to achieve a blood level 25(OH)D > 50 nmol/l, followed by maintenance therapy of 400-1,000 IU/day
- 1-18 Y/O: 2,000 IU per day for 6-12 weeks or 50,000 IU once weekly for 6 weeks to achieve a blood level 25(OH)D > 50 nmol/l, followed by maintenance therapy of 600-1,000 IU/day

PLUS, Ca supplement: 500 mg/day elemental calcium (or 50-100 mg/kg/day divided BID or TID)

## CALCIUM:

Calcium intake:

| Age         | RDA vitamin D (mg/day) | UL (mg/day) |
|-------------|------------------------|-------------|
| 0-12 months | 250                    | 1500        |
| 1-3 years   | 700                    | 2500        |
| 4-8 years   | 1000                   | 2500        |
| 9-18 years  | 1300                   | 3000        |

To maintain Ca intake, **increase dietary intake (1<sup>st</sup> option)**, and/or consider Ca supplementation, if required.

In children with **CP**, the following **daily Ca intake** is considered adequate:

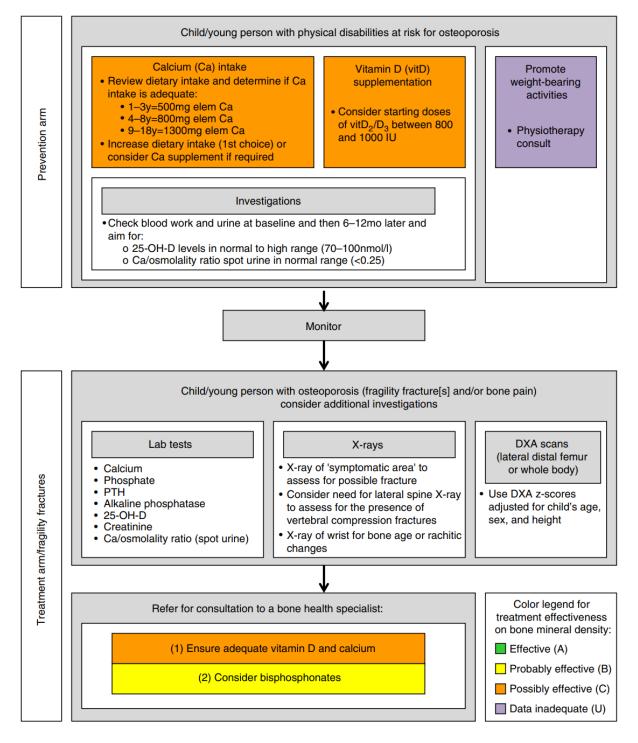
- 1-3 y/O: 500 mg/day
- 4-8 Y/O: 800 mg/day
- 9-18 Y/O: 1300 mg/day

## **BISPHOSPHONATE:**

- Inhibits bone resorption (inhibits osteoclasts)
- Attaches to bones and remain in the skeleton for years
- In children with secondary osteoporosis, bisphosphonates improve BMD and decrease bone pain
- Paucity of long-term pediatric safety data
- Uncertainty about optimal dose, mode of administration, duration, and frequency
- In pediatrics, **ONLY IV infusion formulations** are used (i.e., Pamidronate, Zoledronate)
- If required, consultation with an **endocrinologist** may be required
- Side effects:

0

- Acute phase reaction:
  - Low-grade fever, myalgias, nausea/vomiting, bone pain, decreased lymphocyte counts
    Usually within 48 hr of infusion
  - Transient hypocalcemia and hypophosphatemia
- Atypical femoral fractures
- Dental development
- Osteonecrosis of the jaw (very rare)
- X-ray: Each cycle leaves a dense band at physis that migrates with growth


## **INDECATIONS FOR CONSULTATION:**

### ENDOCRINE:

- (1) Vertebral compression fractures
- (2) Clinical features suggestive of primary osteoporosis
- (3) Secondary osteoporosis not responding to initial management (further fractures, BMD Z-Score worsening over time)

### **ORTHOPEDICS:**

(1) Any fragility fractures



## Osteoporosis clinical practice guidelines for children and young people with cerebral palsy

## **REFERENCES:**

- Ozel S, Switzer L, Mcintosh A, Fehlings D. Informing evidence based clinical practice guidelines for children with cerebral palsy at risk for osteoporosis: an update Dev Med and Child Neurology. 2016; 918=923.
- Holick MF et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96:1911-30.
- IOM (Institute of Medicine). 2011 Dietary Reference Intakes for Calcium and Vitamin D. Washington DC: The National Academies Press.
- Leanne M. Ward. Part I: Which Child with a Chronic Disease Needs Bone Health Monitoring? Current Osteoporosis Reports (2021) 19:278–288.